1 research outputs found

    Transient and stochastic dynamics in cellular processes

    Get PDF
    This Thesis studies different cellular and cell population processes driven by non-linear and stochastic dynamics. The problems addressed here gravitate around the concepts of transient dynamics and relaxation from a perturbed to a steady state. In this regard, in all processes studied, stochastic fluctuations, either intrinsically present in or externally applied to these systems play an important and constructive role, by either driving the systems out of equilibrium, interfering with the underlying deterministic laws, or establishing suitable levels of heterogeneity. The first part of the Thesis is committed the analysis of genetically regulated transient cellular processes. Here, we analyse, from a theoretical standpoint, three genetic circuits with pulsed excitable dynamics. We show that all circuits can work in two different excitable regimes, in contrast to what was previously speculated. We also study how, in the presence of molecular noise, these excitable circuits can generate periodic polymodal pulses due to the combination of two noise induced phenomena: stabilisation of an unstable spiral point and coherence resonance. We also studied an excitable genetic mechanism for the regulation of the transcriptional fluctuations observed in some pluripotency factors in Embryonic Stem cells. In the embryo, pluripotency is a transient cellular state and the exit of cells from it seems to be associated with transcriptional fluctuations. In regard to pluripotency control, we also propose a novel mechanism based on the post-translational regulation of a small set of four pluripotency factors. We have validated the theoretical model, based on the formation of binary complexes among these factors, with quantitative experimental data at the single-cell level. The model suggests that the pluripotency state does not depend on the cellular levels of a single factor, but rather on the equilibrium of correlations between the different proteins. In addition, the model is able to anticipate the phenotype of several mutant cell types and suggests that the regulatory function of the protein interactions is to buffer the transcriptional activity of Oc4, a key pluripotency factor. In the second part of the Thesis we studied the behaviour of a computational cell signalling network of the human fibroblast in the presence of external fluctuations and signals. The results obtained here indicate that the network responds in a nontrivial manner to background chatter, both intrinsically and in the presence of external periodic signals. We show that these responses are consequence of the rerouting of the signal to different network information-transmission paths that emerge as noise is modulated. Finally, we also study the cell population dynamics during the formation of microbial biofilms, wrinkled pellicles of bacteria glued by an extracellular matrix that are one of the simplest cases of self-organised multicellular structures. In this Thesis we develop a spatiotemporal model of cellular growth and death that accounts for the experimentally observed patterns of massive bacterial death that precede wrinkle formation in biofilms. These localised patterns focus mechanical forces during biofilm expansion and trigger the formation of the characteristic ridges. In this sense, the proposed model suggests that the death patterns emerge from the mobility changes in bacteria due to the production of extracellular matrix and the spatially inhomogeneous cellular growth. An important prediction of the model is that matrix productions is crucial for the appearance of the patterns and, therefore for winkle formation. We have also experimentally validated validated this prediction with matrix deficient bacterial strains, which show neither death patterns nor wrinkles.En aquesta Tesi s鈥檈studien diferents processos intracel路lulars i de poblacions cel路lulars regits per din脿mica estoc脿stica i no lineal. El problemes biol貌gics tractats graviten al voltant el concepte de din脿mica transit貌ria i de relaxaci贸 d鈥檜n estat din脿mic pertorbat a l鈥檈stat estacionari. En aquest sentit, en tots els processos estudiats, les fluctuacions estoc脿stiques, presents intr铆nsecament o aplicades de forma externa, hi tenen un paper constructiu, ja sigui empenyent els sistemes fora de l鈥檈quilibri, interferint amb les lleis deterministes subjacents, o establint els nivells d鈥檋eterogene茂tat necessaris. La primera part de la Tesi es dedica a l鈥檈studi de processos cel路lulars transitoris regulats gen猫ticament. En ella analitzem des d鈥檜n punt de vista te貌ric tres circuits gen猫tics de control de polsos excitables i, contr脿riament al que s鈥檋avia especulat anteriorment, establim que tots ells poden treballar en dos tipus de r猫gim excitable. Analitzem tamb茅 com, en pres猫ncia de soroll molecular, aquests circuits excitables poden generar polsos peri貌dics i multimodals degut a la combinaci贸 de dos fen貌mens indu茂ts per soroll: l鈥檈stabilitzaci贸 estoc脿stica d鈥檈stats inestables i la resson脿ncia de coher猫ncia. D鈥檃ltra banda, estudiem com un mecanisme gen猫tic excitable pot ser el responsable de regular a nivell transcripcional les fluctuacions que s鈥檕bserven experimentalment en alguns factors de pluripot猫ncia en c猫l路lules mare embrion脿ries. En l鈥檈mbri贸, la pluripot猫ncia 茅s un estat cel路lular transitori i la sortida de les c猫l路lules d鈥檃quest sembla que est脿 associada a fluctuacions transcripcionals. En relaci贸 al control de la pluripot猫ncia, presentem tamb茅 un nou mecanisme basat en la regulaci贸 post-traduccional d鈥檜n petit conjunt de 4 factors de pluripot猫ncia. El model te貌ric proposat, basat en la formaci贸 de complexos entre els diferents factors de pluripot猫ncia, l鈥檋em validat mitjan莽ant experiments quantitatius en c猫l路lules individuals. El model postula que l鈥檈stat de pluripot猫ncia no dep猫n dels nivells cel路lulars d鈥檜n 煤nic factor, sin贸 d鈥檜n equilibri de correlacions entre diverses prote茂nes. A m茅s, prediu el fenotip de c猫l路lules mutants i suggereix que la funci贸 reguladora de les interaccions entre les quatre prote茂nes 茅s la d鈥檈smorteir l鈥檃ctivitat transcripcional d鈥橭ct4, un dels principals factors de pluripot猫ncia. En el segon apartat de la Tesi estudiem el comportament d鈥檜na xarxa computacional de senyalitzaci贸 cel路lular de fibroblast hum脿 en pres猫ncia de senyals externs fluctuants i c铆clics. Els resultats obtinguts mostren que la xarxa respon de forma no trivial a les fluctuacions ambientals, fins i tot en pres猫ncia d鈥檜na senyal externa. Diferents nivells de soroll permeten modular la resposta de la xarxa, mitjan莽ant la selecci贸 de rutes alternatives de transmissi贸 de la informaci贸. Finalment, estudiem la din脿mica de poblacions cel路lulars durant la formaci贸 de biofilms, pel路l铆cules arrugades d鈥檃glomerats de bacteris que conformen un dels exemples m茅s simples d鈥檈structures multicel路lulars autoorganitzades. En aquesta Tesi presentem un model espai-temporal de creixement i mort cel路lular motivat per l鈥檈vid猫ncia experimental sobre l鈥檃parici贸 de patrons de mort massiva de bacteris previs a la formaci贸 de les arrugues dels biofilms. Aquests patrons localitzats concentren les forces mec脿niques durant l鈥檈xpansi贸 del biofilm i inicien la formaci贸 de les arrugues caracter铆stiques. En aquest sentit, el model proposat explica com es formen els patrons de mort a partir dels canvis de mobilitat dels bacteris deguts a la producci贸 de matriu extracel路lular combinats amb un creixement espacialment heterogeni. Una important predicci贸 del model 茅s que la producci贸 de matriu 茅s un proc茅s clau per a l鈥檃parici贸 dels patrons i, per tant de les arrugues. En aquest aspecte, els nostres resultats experimentals en bacteris mutants que no produeixen components essencials de la matriu, confirmen les prediccions
    corecore